International Journal of Current Trends in **Pharmacobiology and Medical Sciences** Volume 1 • Number 2 (July-2016) • ISSN: 2456-2432 Journal homepage: www.ijctpms.com **Original Research Article** # Disease Management and Biosecurity Measures in Small-scale Commercial Poultry Farms in and around Debre Markos, Amhara Region Ethiopia Melkamu Bezabih Yitbarek¹*, Berhan Tamir Mersso², Ashenafi Mengistu Wosen³ ¹Department of Animal Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia ^{2,3}Department of Animal Production Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia *Corresponding author. ### Abstract This study was conducted to assess management of disease and biosecurity measures of small scale commercial poultry farms. Cross-sectional study was carried out to assess diseases and biosecurity measure by structured questionnaire through personal interview. The data was analysed by $\chi 2$ and t-test, one way analysis of variance and general linear model by SPSS software. The result shown that, only 38.8% of the producers' suspects Coccidiosis is the frequently occurred disease in the farm. Some of the producers (30.6%) suspect the cause of the disease might be environmental problem, 24.5% management problem, and 12.2% both environment and management. The most leading symptoms of diseases occurred in the study area were ruffled feather (15.5%), loss of appetite (15.1%), depression (12.6%), diarrhoea (9.7%), and others. About 79.6 % of the farms had close relation with the veterinarian and consult about disease management. Only 12.2% of the farms vaccinate NCD, 49% NCD and Gumboro, 28.6% NCD, Gumboro and fowlbox and the rest 10.1% vaccinate their chicks for NCD, Gumboro, fowlbox, Cholera/Typhoid/ and Marix disease. Biosecurity measures were very crucial in the poultry farms. About 63.3% of the producers have dressed protective cloth (tuta), only 8.2% of the producers wear hand gloves. Around 77.6% of the producers have used the foot path in front of their farm entrance. Prevention and treatment were the major mechanisms for controlling measure of disease and the mortality percentage of chicks was only 4.7%. From this study it could be concluded that better disease management and biosecurity measures are required to attain better poultry production. ### Article Info Accepted: 29 June 2016 Available Online: 25 July 2016 ### Keywords Biosecurity Disease Mortality rate Symptoms Vaccination # Introduction It is essential that the flock is in good health to achieve their performance potential; however one of the important reasons for failure in the poultry industry is that of disease. Various types of poultry diseases can cause serious loss in the poultry farming business. Diseases occur due to lack of proper care and management, inadequate nutritious feeding and some other factors. Generally diseases can be defined as 'changes of general or usual physical condition'. Almost all types of animal can be affected by different types of disease in their lifetime. Poultry are not exception; they also get affected by numerous diseases. In small scale commercial farms coccidiosis was identified as the most common disease, followed by IBD and NCD (Kinung'hi et al., 2004; Akidarju et al., 2010). However infectious bronchitis, Marek's disease, fowl cholera fowl pox, avian encephalomyelitis are also the major poultry diseases which affects the flock in the farm (Jacob et al., 1998; Ahmed et al., 2011; Hailu, 2012). Hailu (2012) reported that Newcastle disease, infectious bursal disease and Marek's disease are among major viral diseases of chickens in Ethiopia. Diseases can be caused by viruses, mycoplasma, bacteria, fungi, protozoa, and parasites (Hamra, 2010). The most common symptoms of disease in small scale poultry farms were enteritis (Diarrhea), ruffled feather, (dejection), respiratory rales/panting, depression coughing, drooling saliva, swelling of head and eYes, torticollis (twisting of the neck), and others (Akidarju et al., 2010). Developing and practicing daily biosecurity procedures as best management practices on poultry farms will reduce the possibility of introducing infectious diseases. Controlling diseases from the beginning is important for the success of the operation (Mobley and Kahan, 2007). The diseases can be reduced by proper sanitation on the farm, biosecurity measures, and vaccination of the chickens (Hamra, 2010). However, the management of disease and biosecurity measures in small scale commercial poultry farms in and around Debre Markos had not been studied yet and there was no any documented evidence. Therefore, to get a piece of to take remedial measures for information and successful poultry production; this study was done to assess the management of disease and biosecurity measures of small scale commercial poultry farms in and around Debre Markos ### Materials and methods # The study area The study was conducted in and around Debre-Markos, Ethiopia. Debre-Markos is located at 300 km from Addis Ababa in Northwest of the country and 265 km Southeast of Bahir Dar, capital of Amhara Region. The altitude ranges from 500-4154 meter above sea level. The annual rainfall ranges from 900-1800 mm and a minimum and maximum temperature of the area is 7.5°C and 25°C, respectively. ### **Study population** All small-scale poultry farm owners who started by their own initiation and organized by small and micro enterprise offices in and around Debre Markos were considered as the study population. # Research design Cross-sectional study was carried out to assess management of disease and biosecurity measures of small-scale commercial poultry farms. ## Data collection and analysis Data were collected by the use of pretested structured questionnaire through personal interview method from heads (owner of the farm) and leaders of the farm (organized in small and micro enterprise offices) to generate information on management of disease and biosecurity measures in small-scale commercial poultry farms. ## Statistical analysis Data generated was entered into SPSS version 20 and analyzed using descriptive statistics with emphasis on frequency, mean and percentages. Analysis of variance (ANOVA) and t test was computed to know the significant difference of variables. Chi-square (χ^2) for association values was computed to determine the relationships between the categorical variables. ### **Results** ### Socio demographic characteristics The socio demographic characteristics of small scale poultry farmers are presented in Table 1. Sex had a significant effect (p<0.05) on operation of small scale poultry farms. There was no any significant (p>0.05) difference between married and unmarried in small scale poultry production. The educational level were highly significant effect (p<0.05) in running poultry farming. Almost one third (36.7%) of small scale farming was run by first degree poultry producers. Nearly more than half (57.1%) of the producers had not any experience and the rest 42.9% of the producers run their farms with experiences. Family size had a significant effect (p<0.05) in small scale poultry production. Almost 79.6% of the producers had 1-3 family sizes. Just about 79.6% of the poultry producers were engaged fully in poultry production and the rest 20.4% of the producers were a secondary occupation in and around Debre Markos small scale commercial poultry farms. Table 1. Socio demographic characteristics of small scale poultry farms in and around Debre Markos. | Variables | | N=49 | % | χ² | <i>p</i> -value | |-------------------------|--------------|------|------|--------|-----------------| | Sex | M | 41 | 83.7 | 10.694 | < 0.001* | | | F | 8 | 16.3 | | | | Age | <15 | 1 | 2.0 | | | | | 15-30 | 42 | 85.7 | 97.204 | < 0.001* | | | 31-45 | 5 | 10.2 | | | | | 46-60 | 1 | 2.0 | | | | Marital Status | Married | 22 | 44.9 | 0.510 | 0.475 | | | Unmarried | 27 | 55.1 | | | | Religion | Orthodox | 48 | 98 | 45.082 | < 0.001* | | | Muslim | 1 | 2 | | | | | Others | 0 | 0 | | | | Ethnic Group | Amhara | 49 | 100 | 1.000 | < 0.001* | | • | others | 0 | 0 | | | | Occupation | Poultry prod | 39 | 79.6 | 17.163 | <0.001* | | | others | 10 | 20.4 | | | | Family size | 1-3 | 39 | 79.6 | 49.143 | <0.001* | | | 4-6 | 9 | 18.4 | | | | | 7-9 | 1 | 2.0 | | | | Presence of experiences | Yes | 21 | 42.9 | 1.000 | 0.317 | | • | No | 28 | 57.1 | | | | Experience years | new | 28 | 57.1 | 23.551 | <0.001* | | 1 | 1-3 | 20 | 40.8 | | | | | 4-6 | 1 | 2.0 | | | | Educational level | 5-8 grade | 4 | 8.2 | | | | | 9-10 grade | 8 | 16.3 | | | | | 11-12 grade | 9 | 18.4 | | | | | Diploma | 10 | 20.4 | | | | | Degree | 18 | 36.7 | 10.694 | 0.030* | Note: *Shows a significant effect at *p*<0.05. # Flock size of chicks in small scale poultry farms in and around Debre Markos Poultry farms organized by small and micro enterprise offices and by private (initiated by them) is presented in Fig. 1. Almost 75.5% of the small scale poultry farms were run by private producers who initiated by themselves and the rest 24.5% of the producers was organized by small and micro enterprise offices. **Fig. 1.** Poultry farms organized by small and micro enterprise and by private (initiated by them). **Table 2.** Flock size and breeds of chicks in small scale poultry farms in and around Debre Markos. | Variable | es | N (%) | Mean (SEM) | |-----------|------------------|-----------|------------------------------| | Flock siz | ze e | 49 (100) | 844.3 (98.257) | | Sex | Female chicks | 49 (100) | 774.7 (98.257) ^a | | | Male chick | 13 (26.5) | 261.7 (104.890) ^b | | | Bovans brown | 35 (71.4) | 982.0 (121.952) ^a | | Breed | (egg type) | | | | | Bovans white | 2 (4.1) | $1105.0(605.000)^{a}$ | | | (egg type) | | | | | Koekoek (dual) | 9 (18.4) | 354.4 (82.481) ^a | | | Sasso T44 (dual) | 3 (6.1) | 503.3 (115.518) ^a | **Note:** N (%) describes number or percent of producers; SEM-standard error of mean, means with the different letter of superscript in the same column did differ significantly (p<0.05). The flock size and breeds of chicks in small scale poultry farms in and around Debre Markos is presented in Table 2. The mean flock size per farm was 844.3, however the flock size was significantly (p<0.05) influenced by sex of birds. Female chicks were higher (p<0.05) than male chicks. The flock was composed of four breeds of chicks like Bovans brown (egg type), Bovans white (egg type), Koekoek (dual), Sasso T44 (dual). The flock size did not statistically (p>0.05) affected by breed. However, 71.4% of the producers had kept Bovans brown. # Poultry disease and prevention mechanism in small scale poultry farms Poultry disease and prevention mechanism are presented in Table 3. Only 38.8% of the producers suspect the frequently occurred disease in the farm was coccidiosis and the other 61.2% of the producer didn't know which type of disease occurred in their farm. However there was not accustomed to record the disease occurred. Some of the producers (30.6%) suspect the cause of the disease might be environmental problem, 24.5% of the producers replied that the cause of the disease might be management problem. About 12.2% suspect both environment and management problem. The other 24.5% of the respondents didn't know the cause of the diseases in their farms. There was a significant (p<0.05) difference in the experiences of disease outbreak. About 91.8% of the producers didn't have an exposure of disease outbreak and reporting of the disease outbreak for the concerned body. However, prevention and treatment were the major mechanisms for controlling measure of the disease. The immediate measures of sick birds were isolation and treat them until recovery. More than half of the producers can treat their chicks by their own by purchasing Amprollium and oxytetracycline from vet pharmacy. If a disease was sever, all the producers accustomed to call veterinarian when the birds at sick for treatment and among them about 81.6% of the producers had close relation with veterinarians. All producers vaccinate their chicks either twice, thrice, fourth and more than fourth. Majority of the producers (46.9%) vaccinate their chicks more than four times. Nearly half of (49%) the producers vaccinate for Newcastle disease and Gumboro. About 98% of the producers adhered with the vaccination schedule, however, there was no any significant difference (p>0.05) in differentiation the name of the vaccine to be given for what type of disease. There were no any significant (p>0.05) difference on the cost of the vaccine, thus 40.8% of the respondents said that the purchasing price of the vaccine was optimum price. The mortality percentage of chicks in small scale commercial poultry farms was only 4.7% at 1-3 weeks of age. According to the producers replied, the highest mortality was recorded during long rainy season and their mortality was sporadic. The reason of mortality was transportation stress (51%) and overcrowding (32.7%) due to the disturbance of the light. Table 3. Poultry health and disease in small scale poultry farms in and around Debre Markos. | Variables | | No. | % | χ2 | <i>p</i> -value | |-------------------------------------|--------------------------------|-----|------|--------|-----------------| | Do you vaccinate your chicken | Yes | 49 | 100 | | | | Vaccination of the disease | NCD | 6 | 12.2 | | | | | NCD ¹ | 24 | 49.0 | 19.000 | < 0.001* | | | NCD^2 | 14 | 28.6 | | | | | NCD^3 | 5 | 10.2 | | | | Frequency of vaccination | Once | 0 | 0 | | | | | Twice | 10 | 20.4 | | | | | Thrice | 7 | 14.3 | | | | | Fourth | 9 | 18.4 | | | | | > Fourth | 23 | 46.9 | 12.959 | 0.005* | | Adherence of vaccination schedule | Adhered | 48 | 98 | 45.082 | < 0.001* | | | Non adhered | 1 | 2 | | | | Immediate measure for sick birds | Isolation and treat them until | 49 | 100 | | | | observed | recovery | | | | | | Experiences for disease outbreak | Yes | 4 | 8.2 | | | | | No | 45 | 91.8 | 34.306 | < 0.001* | | Reporting of disease out break | Yes | 4 | 8.2 | | | | | No | 45 | 91.8 | 34.306 | < 0.001* | | Type of disease frequently occurred | I know (Coccidiosis) | 19 | 38.8 | | | | | I don't know | 30 | 61.2 | 2.469 | 0.116 | | Variables | | No. | % | χ2 | <i>p</i> -value | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------------|--------|-----------------| | Do you know the name of vaccine | Yes | 26 | 53.1 | 0.184 | 0.668 | | · · | No | 23 | 46.9 | | | | Close relation with the veterinarian | Yes | 39 | 79.6 | 17.163 | <0.001* | | | No | 10 | 20.4 | | | | Accustomed to inform for | Yes | 40 | 81.6 | 19.612 | <0.001* | | vaccine/treatment | | | | | | | | No | 9 | 18.4 | | | | Time of recovery after treatment | 1-3 days | 30 | 61.2 | 17.184 | <0.001* | | · | 4-6 days | 9 | 18.4 | | | | | No recovery | 10 | 20.4 | | | | in what case you call veterinarian | At sick | 49 | 100 | | | | Accustomed to treat your chick by | Yes | 27 | 55.1 | 0.510 | 0.475 | | your own | | | | | | | | No | 22 | 44.9 | | | | Cost of vaccine | Cheap | 16 | 32.7 | | | | | Medium | 20 | 40.8 | 1.510 | 0.470 | | | Expensive | 13 | 26.5 | | | | Accustomed to record the disease | Yes | 0 | 0 | | | | | No | 49 | 100 | | | | Presence of isolation room | Yes | 49 | 100 | | | | | No | 0 | 0 | | | | what could be the causes of | Management | 12 | 24.5 | | | | infection | E | | | | | | | Environment | 15 | 30.6 | 8.653 | 0.070 | | | Both | 6 | 12.2 | | | | | I don't know clearly | 12 | 24.5 | | | | | No disease occurrence | 4 | 8.2 | | | | Major control measure of disease | Prevention and treatment | 49 | 100 | | | | Highest mortality age | Starter (1-3 weeks) | 49 | 100 | | | | Season of mortality | Long dry season (October to | 3 | 6.1 | | | | • | January) | | | | | | | Long rainy season (June to | 46 | 93.9 | 37.735 | <0.001* | | | September) | | | | | | Reasons of mortality | Transportation stress | 25 | 51.0 | 26.184 | <0.001* | | , and the second | Overcrowding due to light | 16 | 32.7 | | | | | Cannibalism | 2 | 4.1 | | | | | Unclear | 6 | 12.2 | | | | type of mortality | Sudden | 14 | 28.6 | | | | J1 | Sporadic | 35 | 71.4 | 9.000 | 0.003* | | Mortality % | 1 | | 4.7 | | | | Survival % | | | 95.3 | | | | Notes NCD Newcostle diagona 1 NCI | 2 C 1 2 NGD C 1 | c 11 3 | NCD Cumbon | C 11 E | 1.01.1./ | **Note:** NCD-Newcastle disease, ¹-NCD, Gumboro, ²- NCD, Gumboro, fowlbox, ³-NCD, Gumboro, fowlbox, Fowl Cholera/ Typhoid/Marix disease). *depicts a significant difference (*p*<0.05) in the same column in chi square test. The major symptoms of disease in small scale commercial poultry farms are presented on Fig. 4. The most leading symptoms of diseases were ruffled feather (15.5%), loss of appetite (15.1%), depression (12.6%), diarrhoea (9.7%), weight loss (9.7%), cannibalism (6.3%), paralysis (4.6%), twisting of necks (4.6%) and others. ### **Biosecurity of small-scale poultry farms** Biosecurity of small-scale poultry farms in and around Debre Markos is presented in Table 4. There was significantly higher (p<0.05) in use of the foot bath to protect the entrance of microorganisms in the farm. Around 77.6% of the producers have used the foot path in front of their farm entrance like formalin and berekina. Only 63.3% of the producers have dressed protective cloth (tuta), however, 91.8% of the producers didn't use hand gloves. Fig. 2: Symptoms seen in small-scale poultry farms in and around Debre Markos. **Table 4.** Biosecurity of small-scale poultry farms in and around Debre Markos. | Variables | | N | % | χ^2 | <i>p</i> -value | | |-----------------------------|-----|----|------|----------|-----------------|--| | Presence of foot path | Yes | 38 | 77.6 | 14.878 | <0.001* | | | | No | 11 | 22.4 | | | | | Wearing of protective cloth | Yes | 31 | 63.3 | 3.449 | 0.063 | | | | No | 18 | 36.7 | | | | | Using of hand gloves | Yes | 4 | 8.2 | | | | | | No | 45 | 91.8 | 34.306 | <0.001* | | **Note:** * depicts a significant difference (p < 0.05) in the same column in Chi-square test. #### **Discussion** # Disease and symptoms in small scale commercial poultry farms It is essential that the flock is in good health to achieve their performance potential; however one of the important reasons for failure in the poultry industry is that of disease. Jacob et al. (1998), Ahmed et al. (2011) and Hailu (2012) reported that Gumboro disease (IBD), Newcastle disease, coccidiosis, infectious bronchitis, Marek's disease, fowl cholera fowl pox, encephalomyelitis are the major poultry diseases which affects the flock in the farm. Hailu (2012) reported that Newcastle disease, infectious bursal disease and Marek's disease are among major viral diseases of chickens in Ethiopia. Nevertheless, almost all the producers didn't know which type of disease occurred in their farms and hadn't accustomed to record the disease occurred, however, few of the producers (38.8%) suspect coccidiosis was the frequently occurred disease in the study area. Nearly similar result was reported by Nusirat et al. (2012) who noted that about 33.3% of the producers reported coccidiosis was the most common disease outbreak in farms, followed by IBD (24.2%) and NCD (21.2%) in Ilorin, Kwara State, Nigeria. Proportional mortality rates due to coccidiosis were 14.5% and 13.3% in small scale and large scale poultry farms, respectively (Kinung'hi et al., 2004). Diseases can be caused by viruses, mycoplasma, bacteria, fungi, protozoa, and parasites (Hamra, 2010). However in the study area, some of the producers (30.6%) suspect the cause of the disease might be environmental problem, 24.5% management problem, and 12.2% both environment and management. Jones et al. (2005) reported that poor management practices and environmental variation (temperature and relative humidity) were the cause of the disease and adversely affected the health of the flock. Reiter and Bessei (2000) have emphasized the importance of local variation in temperature and humidity affects the birds' health. The management practices especially poor health care and keeping the birds beyond standard rearing period affects the flock (Rahman, 2015). Weather or poor management practices also the cause of the disease and affects the flock in the farm (Akidarju et al., 2010). Key factors that can increase the risk of disease include the number of birds on the farm, whether or not keeping other species of bird, not using all in and all out management system, feed type and source, stress levels, breed type and so on (Anna, 2011). The most leading symptoms of diseases occurred in the study area were ruffled feather (15.5%), loss of appetite (15.1%), depression (12.6%), and diarrhoea (9.7%), and weight loss (9.7%), cannibalism (6.3%), paralysis (4.6%), twisting of necks (4.6%) and others. Nearly similar result was reported by Akidarju et al. (2010) in Maiduguri arid zone, Nigeria. About 91.8% of the producers didn't have an exposure of disease outbreak and reporting of it for veterinarians in the study area. Nearly similar result was stated by Uduak et al. (2014) who reported that about 74% of the producers did not report any disease outbreak while 26% of the farmers reported disease outbreaks in small scale commercial poultry farms in Kaduna State, Nigeria. Nusirat et al. (2012) also noted that the producers reported 33.3% coccidiosis, 24.2% IBD and 21.2% NCD as a disease outbreak in Ilorin, Kwara State, Nigeria. About 79.6 % of the farms had close relation with the veterinarian and consult about disease management in the study area. In contrast Nusirat et al. (2012) reported that 42.1% of respondents routinely consulted veterinarians in Ilorin, Kwara State, Nigeria A good disease prevention program should be available for the newly introduced chicks to avoid any future losses (Hamra, 2010). Thus, prevention and treatment were the major mechanisms for controlling measure of disease in the study area. Mobley and Kahan, (2007) reported that controlling diseases from the beginning is important for the success of the operation. More than half of the producers can treat their chicks by their own by purchasing Amprollium and oxytetracycline from vet pharmacy. If a disease was sever, all the producers accustomed to call veterinarian when the birds at sick for treatment and among them about 81.6% of the producers had close relation with veterinarians. Muhammad et al. (2010) reported that only 28.8% consulted a veterinarian for diagnosis and treatment, and the other 71% selfdiagnosed the problems and instituted treatment which included vitamin supplementation or antimicrobial therapy, with enrofloxacin and gentamycin being the most popular drugs used in Jos, Central Nigeria. All producers had an isolation room for sick birds. However, Birhanu et al. (2015) reported that about 76% of the producers had isolation pen for diseased chicken in and around Mekelle. Almost All in and all out management system was done in the study area, however, Birhanu et al. (2015) reported that only 24% of the farms were practicing all in all out management system in and around Mekelle Ethiopia. #### Vaccination in small scale commercial farms Controlling diseases from the beginning is important for the success of the operation (Mobley and Kahan, 2007). Vaccination is an effective way to reduce the negative effects of diseases that can cause losses in a poultry operation (Hamra, 2010). All small scale commercial farms in the study area have accustomed to vaccinate their chicks either twice, thrice, fourth and more than fourth. Majority of the producers (46.9%) vaccinate their chicks more than four times. Only 12.2% of the farms vaccinate NCD, 49% NCD and Gumboro, 28.6% NCD, Gumboro and fowlbox and the rest 10.1% vaccinate their chicks for NCD, Gumboro, fowlbox, Cholera/Typhoid/ and Marix disease. Similar result was reported by Muhammad et al. (2010) all farmers (100%) vaccinated their flocks against Infectious Bursal Disease (Gumboro) in the first week in Jos, Central Nigeria. However Bereket et al. (2014) reported that among respondents 24% vaccinated and 76% did not vaccinate for common diseases in the area in small scale intensive poultry farms in Bahir Dar Zuria District, Ethiopia. The result was nearly similar with the report of Nusirat et al. (2012) who reported that about 48.5% of the respondents practiced all the recommended vaccination of their birds against the preventable diseases of Newcastle Disease (NCD), Infectious Bursal Disease (IBD), Fowl Cholera, and Fowl pox in Ilorin, Kwara State, Nigeria. Birhanu et al.(2015) reported that about 84% of the farms were use vaccine for prevention of NCD, Fowl pox and Marek's diseases, whereas 80% of the farms use prophylactic antibiotics for prevention of bacterial diseases in and around Mekelle, Ethiopia. About 98% of the producers adhered with vaccination schedule. In contrast Akidarju et al. (2010) reported that 27.8% of the poultry farmers were full adherence to vaccination schedules for their chickens, as against 56.7% non-adherence in Maiduguri arid zone, Nigeria. ### Mortality of chicks in small scale commercial farms The mortality percentage of chicks in the study area was only 4.7% at 1-3 weeks of age. According to the producers replied, the highest mortality was recorded during long rainy season and their mortality was sporadic. Similar result was reported by Geidam et al. (2006) who noted that when chicks are bought at day old mortality should not exceed 3% by the 3rd week; loss exceeding 5% requires an investigation. Mortality percentage can reach 10% or more in the first week of age in poultry farms (Anna, 2011). Mortality rate may rise due to disease, predation or high temperature. The mortality rate of small chicks (up to eight weeks of age) is about 4%; that of growers (between eight and 20 weeks of age) is about 15 %; and that of layers (between 20 and 72 weeks of age) is about 12%. The average mortality rate of a flock is from 20 to 25% per year (FAO, 2003). The reason of mortality in the study area was transportation stress (51%), overcrowding (32.7%) due to the disturbance of the light and the rest by disease. However Akidarju et al. (2010) reported that about one third of the producers informed that sudden mortality was occurred frequently due to different diseases in small scale commercial farms in Maiduguri arid zone, Nigeria. According to Muhammad et al. (2010) the level of chick mortality in was 11.4% of flock size in the first two weeks of life and the major predisposing factors associated with these mortalities appears to be chick quality, disease, stress and nutrition and other management in small scale poultry farms in Jos, Central Nigeria. Early chick mortality is associated with disease, poor management, inadequate brooding temperatures and heat stress in hot climates (Chou et al., 2004). Poor quality hatches have also been reported to increase first week mortality from 0.8-13% (With, 2001). The first week after hatching is known to be the highest risk period for raising chicks (Chou et al., 2004). Most farmers in Jos, Central Nigeria recognized that conditions such as stress could affect their flocks in the initial first weeks, and other management factors and the source of chicks in predisposing to early chick mortality (Muhammad et al., 2010). Presence of diseases, feed shortage, predators and bad weather condition/extreme weather condition/ were identified as the major causes of chicken mortality. Among diseases Newcastle diseases, Infectious bursal diseases and coccidiosis were cited in their order of importance in Bahir Dar Zuria District, Ethiopia (Bereket et al., 2014). Temperature and ventilation in the brood house are generally considered to be significant factors for mortality early in the chicks' life (Anna, 2011). The major diseases or conditions that farmers associated with mortality included stress (25.6%), Pullorum disease (13.3%), diarrhoea (13.3%), coccidiosis (4.4%), Chronic Respiratory Disease (CRD) (1.1%) and management causes such as overcrowding and poor ventilation (8%) in Jos, Central Nigeria (Muhammad et al., 2010). # Biosecurity in small scale commercial poultry farms Developing and practicing daily biosecurity procedures as best management practices on poultry farms will reduce the possibility of introducing infectious diseases. The risk of disease transmission between farms can be reduced through appropriate farm sitting management. Disease outbreaks (from pathogenic bacteria and viruses) in poultry can spread between farms and significantly affect poultry growing enterprises. The risk of disease developing on a farm is influenced by many factors, including the management of litter, feed and water; disinfection of sheds; vermin removal; disposal of used litter and dead birds; and the effectiveness of biosecurity measures adopted for people and equipment entering the farm (Stephen, 2012). Biosecurity measures are very crucial in the poultry farms like wearing of protective cloths and gloves. However in the study area, about 63.3% of the producers have dressed protective cloth (tuta), only 8.2% of the producers wear hand gloves and very few producers wear the boot on their own foot. Similar result was reported by Nusirat et al. (2012) who noted that greater than one third (35.1%) of respondents did not use any form of protective clothing on their farms while 29.7% used outer clothing like overall in their farms. Also 18.9% used hand gloves as a form of protective clothing. Birhanu et al. (2015) noted that 76% of the producers used separate clothes and shoes in and around Mekelle small scale commercial poultry farms. Around 77.6% of the producers have used the foot path in front of their farm entrance like formalin and berekina in the study area. The result was in line with the report of Birhanu et al. (2015) who noted that about 80% of the farms were applying a foot bath at the door of entrance in and around Mekelle small scale poultry farm. The result is nearly similar with Uduak et al. (2014) who confirmed that 66% of the farms used the foot bath in Nigeria. Small scale farms are characterized by low levels of biosecurity and are more prone to the introduction of infectious agents (Akidarju et al., 2010). About 78.95% the producers practiced biosecurity in Ilesha West Local Government Area of Osun State, Nigeria (Adedeji et al., 2014). The reason might be lack of knowledge about the use of biosecurity measures and its benefit. ### **Conclusion** Almost all the producers didn't know which type of disease occurred in their farms and hadn't accustomed to record the disease occurred, however few of the producers suspect Coccidiosis. The cause of the disease might be environmental problem, management problem and both environment and management problem. The most leading and frequently observed symptoms of diseases were ruffled feather loss of appetite, depression, diarrhoea, weight loss, cannibalism, paralysis, twisting of necks, and others. All farms had accustomed to vaccinate their chicks either twice, thrice, fourth and more than fourth for NCD, Gumboro, fowlbox, Fowl Cholera/Typhoid/ and Marix disease. Biosecurity measures were very crucial in the poultry farms like wearing of protective cloths and gloves, and using of the foot path in front of their farm entrance like formalin. Prevention and treatment were the major mechanisms for controlling measure of disease and the mortality percentage of chicks was only 4.7%. ### **Conflict of interest statement** Authors declare that they have no conflict of interest. ### Acknowledgement The authors are especially acknowledged to Debre Markos University and Addis Ababa University for their financial support to undertake this study. ### References - Adedeji, O.S., Amao, S.R., Alabi, T.J., Opebiyi, O.B., 2014. Assessment of poultry production system in Ilesha West Local Government area of Osun State, Nigeria. Sch. J. Agric. Vet. Sci. 1(1), 20-27. - Ahmed, A., Mijinyawa, M.S., Adamu, A.Y., Suleiman, A.D., 2011. Small holder poultry management practices and constraint among women poultry farmers in Kano State, Nigeria. Nig. Vet. J. 32, 151-153. - Akidarju, M. S., Onyemaechi, E.G., Dauda, M.G., 2010. An assessment of some poultry management practices and disease recognition by poultry farmers in Maiduguri Arid Zone, Nigeria. World's Poult. Sci. J. 66, 285-296. - Anna, B., 2011. Animal Welfare Approved. Technical paper no. 8. www.animalwelfareapproved.org - Bereket, A., Tadesse, D., Mekuriaw, S., 2014. Study on major causes of chicken mortality and associated risk factors in Bahir Dar Zuria District, Ethiopia. Afr. J. Agric. Res. 9(48), 3465-3472. - Birhanu, H., Alemayhu, T., Hagos, Y., Teklu, A., 2015. Assessment of bio-security condition in small scale poultry production system in and around Mekelle, Ethiopia. Eur. J. Biol. Sci. 7(3), 99-102. - Chou, C.C., Jiang, D.D., Hung, Y.P., 2004. Risk factors for cumulative mortality in broiler chicken flocks in the first week of life in Taiwan. Braz. Poult. Sci. 45, 573-577. - FAO, 2003. Egg Marketing. FAO Agricultural Services Bulletin 150, Rome, Italy, pp.1-10. - Geidam, Y.A., M.M. Bukar and A.G. Ambali, (2006): Chick quality control: A key to sustainable poultry production in Nigeria. Nig. Vet. J., 27: 1-6. - Hailu, M., 2012. Review on major viral diseases of chickens reported in Ethiopia. J. Infect. Dis. Immun. 4(1), 1-9. - Hamra, C.F., 2010. An Assessment of the Potential Profitability of Poultry Farms: A Broiler Farm Feasibility Case Study. M. Sc. thesis submitted to the Faculty of The University of Tennessee at Martin, South Lebanon. - Jacob, J.P., Butcher, G.D., Mather, F.B., 1998. Vaccination of Small Poultry Flocks, University of Florida, Gainesville, 32611. - Jones, T. A., Donnelly, C. A., Stamp Dawkins, M., 2005. Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at five densities. Poult. Sci. 84, 1155-1165. - Mobley, R., Kahan, T., 2007. Practical Management of Health Issues in a Poultry Production System: Symptoms, Sources, and Prevention of Common Diseases, Florida A&M University, Tallahassee, Florida. - Muhammad, M., Muhammad, L.U., Ambali, A.G., Mani, A.U., 2010. A survey of early chick mortality on small-scale poultry farms in Jos, Central Nigeria. Int. J. Poult. Sci. 9(5), 446-449. - Nusirat, E., Jaji, Z., Badiru, A., Olowoleni, F., Ambali, A.G., 2012. Assessment of management and health practices in some selected poultry establishments in Ilorin, Kwara State, Nigeria. Int. J. Poult. Sci. 11(8), 524-528. - Rahman, S., 2015. Management of broiler farms in Aizawl District of Mizoram, India. Livestock Res. Rural Develop. Vol. 27, Article #61. Retrieved June 10, 2016, from http://www.lrrd.org/lrrd27/4/rahm27061.html - Reiter, K., Bessei, W., 2000. Effect of stocking density of broilers on temperature in the litter and at bird level. Arch. Geflugelkd. 64, 204-206. - Kinung'hi, S.M., Tilahun, G., Hafez, H. M., Woldemeskel, M., Kyule, M., Grainer, M., Baumann, M. P. O., 2004. Assessment of economic impact caused by poultry coccidiosis in small and large scale poultry farms in Debre Zeit, Ethiopia. Int. J. Poult. Sci. 3(11), 715-718. - Stephen, C., 2012. Best Practice Management for Meat Chicken Production in New South Wales -Manual 2 - (Meat Chicken Growing Management).ISBN 978 1 74256 250 6. pp.4-20. - Uduak, A., Kwaga, J. K. P., Kabir, J., Umoh, V. J., Otalu Jr. O., 2014. Assessment of some poultry management practices in Kaduna State, Nigeria. World J. Public Health Sci. 3(1), 1-4. - With, L., 2001. Problems associated with hatching Coab500 broiler chicks in New Zealand conditions http://www.jcu.edu.au/school/bms/avpa/avpa_NZ_2001/. Accessed 9 July, 2007. ### How to cite this article: Yitbarek, M. B., Mersso, B. T., Wosen, A. M., 2016. Disease management and biosecurity measures in small-scale commercial poultry farms in and around Debre Markos, Amhara Region Ethiopia. Int. J. Curr. Trend. Pharmacobiol. Med. Sci. 1(2), 27-36.